Household Behavioral Response and Clubs to Lockdown Policy in Europe: Evidence From COVID

Sonora, Robert

Other document types / Ostale vrste dokumenata Publication year / Godina izdavanja: 2024 Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:242:253873 Rights / Prava: In copyright /Zaštićeno autorskim pravom. Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Institute of Public Finance Repository

Household Behavioral Response and Clubs to Lockdown Policy in Europe: Evidence From COVID

Robert Sonora

College of Business Universitty of Montana, USA

Visiting Scholar, Faculty of Economics and Business, University of Zagreb, Croatia

Institute of Public Finance, Zagreb, HR: June 6, 2024

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

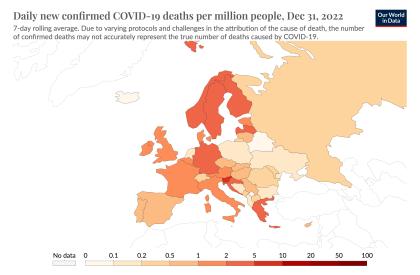
Empirical Evidence from COVID-19

COVID-19 is an exceptional shock to social system

- Natural experiment to study the impact on changes in behavior.
- Rare opportunity to empirically estimate resilience in behavior changes.

Enabled to collect daily data on individual human behavior on a population size.

Analyze whether or not policy maker and resident "preferences" align and how long does it take?

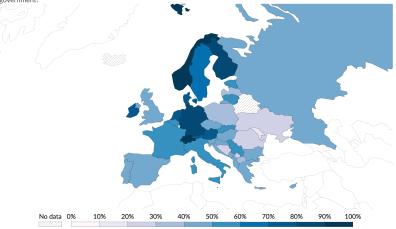

Companion

- Sonora's (2022) Taylor rule which estimated a policy loss function
- Similar analysis as in Gottwald and Sonora (2023) for the US
- More recently, Sonora and Tica (2024) investigate endogeneity of policy, behavior, Covid, the economy and "news"

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Investigation of policy effectiveness Potter (2006)

Comparison: Where we were Dec 31, 2022



Comparison: Trust in government 2020

Share of people who trust their national government, 2020

Share of respondents who answered "a lot" or "some" to the question: "How much do you trust your national government?"

OurWorldInData.org/trust | CC BY

Resilience in behavioral changes

People are more sensitive to negative than to positive events (Prospect theory, Tversky and Kahneman, 1992)

- Cognitive bias and regret aversion influence risk attitude
- Changes in habitual actions:
- Influenced by the policy- level of respond to coordinated interventions,
 - Unobserved idiosyncratic human behavior self-driven preferences evaluated over uncertainty and risk-attitude,

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

- Fear and risk salient factors cause preference reversal,
- Changes in behavior captures sensitivity to risk-attitude.

Resilience in behavioral changes

Mean reversion theory suggests that regret, fear or risk will converge to "normal" over time

- Can we say that individual behavior follows stochastic process with sporadic drift close around the mean that eventually converges towards normality?
- Put it another way does behavior and policy preferences eventually converges?

What characteristics make for effective policy?

- Believable/trust
- ► Feasible
- ► Enforceable
- ► Implementable
- Understandable/Coherent

Note: $Policy_i \stackrel{?}{=} Policy_j \forall i \neq j$? Probably not

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Effectiveness of stringency policies

- Ex-ante:
 - Mobility should decrease as stringency increase: Restrictions are "expected" to follow 1 to -1 relationship
 - Differences in preferences across countries should lead to idiosyncratic responses to policy recommendations,
- We estimate human behavior using the cell phone data as proxy for social interaction relative to policy stringency index on EU countries.
- Do individual responses aligns to policy preferences and how long does it take to converge?

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Modeling strategy

We have daily state:

 Policy, stringency, data which is a set of rules restricting individual mobility behavior: stay-at-home orders, only shopping for food or medicine, social distancing, etc:

NB: This does not imply that the policy will be effective in preventing COVID

We can think of this in terms of minimizing a "policy loss function" in terms of COVID and unemployment:

$$P^* = SI^* = \min_{\{C,U\}} \mathcal{L}(Covid, \overset{(+)}{u}, \vartheta)$$

 ϑ is a policy parameter

- Cell phone data which represents mobile individuality in a given country (via revealed preferences);
- Each of these represent the preferences of policy makers ("P") and residents/behavior ("B")

- Model

- Policy response

Policy effectiveness

Consider policy effectiveness, for any time t, compactly in the relationship

$$B_t = \beta \mathbf{P}_t + \eta_t, \beta \ge \mathbf{0}$$

where

B is individual target behavior **P** is a vector of policies, $\mathbf{P} \sim iid(\mathbf{\bar{P}}, \sigma_{\mathbf{P}}^2)$ $\eta \sim iid(0, \sigma_{\eta}^2)$ other exogenous factors that influence behavior

If $\beta = 1 \Rightarrow$ perfect policy "pass through"

- Model

- Policy response

Optimal policy

The policy-maker must design an optimal policy based on any given policy response to achieve the policy goal, B^* ,

$$B_t^* = \tilde{\beta}_t \mathbf{P}_t^*.$$

That is the preferences of both the residents *r* and policy-maker *p* are equal:

$$U_{r,i}(B^*_{t,i}) = U_{p,i}(\mathbf{P}^*_{t,i}|\tilde{\beta}_{t,i})$$

for any location *i* but this does *not* imply, e.g. $U_{r,i} = U_{r,j} \& U_{p,i} = U_{p,j}$

 $\tilde{\beta_t} \not =$ 1 is households actual response, not this could be time varying

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

COVID	heh	avior

- Model

- Policy Confusion

Policy confusion

 Policy "confusion", or uncertainty, is determined by the variability in B. Angelini et al (2023) define their policy function evolving as (adaptive expectations):

$$\mathbf{P}_t = \rho \mathbf{P}_{t-1} + (1-\rho) \mathbf{P}_t^*$$

Here \mathbf{P}^* is policy maker's optimal response to minimizing an economy-health loss function, as estimated in Sonora (2022)

> This equation can be rewritten as an adaptive expectations policy function as

$$\Delta \mathbf{P}_t = \lambda (\mathbf{P}_t^* - \mathbf{P}_{t-1})$$

where $\lambda \equiv (1 - \rho)$ is the adjustment parameter.

- Model

Policy Confusion

Policy confusion

After substituting and noting $E(\mathbf{P}, \eta) \neq 0$ and \mathbf{P}_t and \mathbf{P}_t^* are time variant, we can write policy confusion as:

$$E(B^2) = \rho \beta^2 E(\mathbf{P}_t, \mathbf{P}_{t-1}) + \beta^2 \lambda E(\mathbf{P}_t, \mathbf{P}_t^*) + \beta E(\mathbf{P}_t, \eta_t) + \beta \lambda E(\mathbf{P}_t, \eta_t) + Var(\eta^2)$$

NB: $E(\mathbf{P}_{t-1}, \eta_t) = 0$

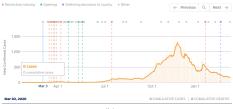
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model

Policy Confusion

Example: WA and MT

RECENT OPENING AND CLOSING POLICY DECISIONS



Mar 04, 2020

39 CUMULATIVE CASES | 10 CUMULATIVE DEATHS

(a) WA

RECENT OPENING AND CLOSING POLICY DECISIONS

(b) MT

- Model

Empirical strategy

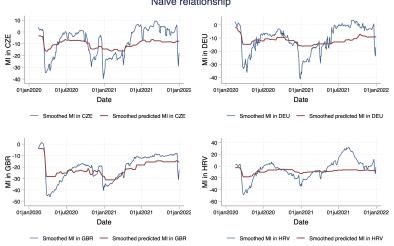
Modeling strategy

Mobility is determined by policy restrictions ...

$$\textit{Mobility}_t = \alpha + \beta \cdot \textit{Policy}_t + \eta_t$$

Passing the expectation operator through and in a perfect world there is a 1-to-1 relationship

$$H_0: E(Mobility_t) = \alpha + \beta \cdot Policy_t + \eta_t$$


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

i.e. $U_B \approx U_P$ via revealed preferences

Model

Empirical strategy

A naïve representation

Naive relationship

イロト イポト イヨト イヨト э 990

- Model

Empirical strategy

What is $\hat{\eta}$?

 $\hat{\eta}_t = \textit{Mobility}_t - \hat{\alpha} - \hat{\beta}\textit{Policy}_t$

- The deviation of people's mobility behavior from policy prescription
- Unobserved component individual behavior and reflects: perception of risk, politics, beliefs, other information, etc.
- If $\hat{\eta} \sim I(0)$ then

 $\lim_{t\to\infty} U_B = U_P$

Model

Empirical strategy step I: ARDL

ARDL behavior model

We employ the ARDL model

$$GMI_t = \alpha + \rho MI_{t-7} + \beta(L)SI_t + \mathbf{X}'_t \gamma + (\eta_t), \ t = 0, \dots, T$$

with $\beta(L) = 0, 7, 14$ lags

Interested in

- time series properties of unobserved behavior: $\hat{\eta} \sim I(0)$?
- immediate response:

$$\frac{\Delta GMI_t}{\Delta SI_t} = \hat{\beta}_0$$

"adjusted" response

$$\textit{Response} = \frac{\hat{\beta}_0 + \hat{\beta}_{-7} + \hat{\beta}_{-14}}{1 - \hat{\rho}} \approx -1$$

- ► Response ∈ (-1, 0): relative policy/risk taking
- ► Response < -1: relative policy/risk averse

Control vector: $\mathbf{X} = (Vax, Season, \Delta Cov)'$

- Model

Unit root tests

Unit root tests: $\hat{\eta} \sim I(0)$?

Elliot, Rothenberg, and Stock

ADF test which relies on GLS detrending to reduce size distortions \rightarrow power \uparrow

Rolling 270 day window ADF tests

Analyze the time series properties of $\hat{\eta}$ over the course of the sample period with a fixed window

Recall, $\hat{\beta}_t \neq \beta \forall t, \beta$ can be time variant depending on new environment and information

Rolling 50-300 day ADF tests

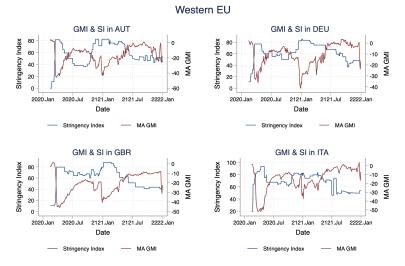
determine what % of each window length are $I(0) \rightarrow$ how long must window be before series become stationary?

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Effectively, estimates "time to compliance"

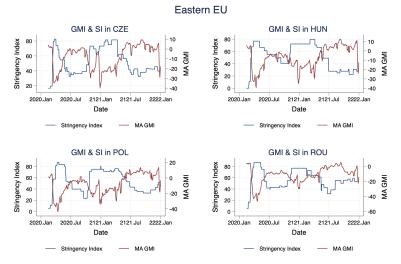
Maximum allowed lagged dependent variable: 14 days

Data sources

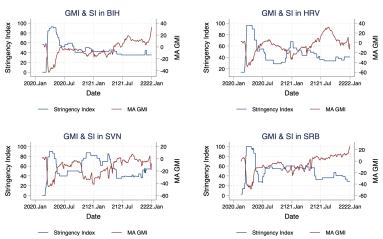

- Daily data from January 22, 2020 to December 31, 2021 by Country
- Full sample 33 European countries
- This presentation restricts the analysis to 12 countries:
 - Western EU: AUT, DEU, GBR, ITA
 - ► Eastern EU: CZE, HUN, POL, ROU
 - Ex-Yugoslavia: BIH, HRV, SLV SRB

Data sources

- Google Mobility Index (GMI): average of cell phone mobility over 5 categories Grocery and pharmacy, retail and recreation, parks residential, work, and transit, GMI ∈ (-100%, ∞)
 - Chose not to use: Apple MI (only iPhone users) and Dallas Fed's MI (ended in March, 2020)
- ► Oxford Coronavirus Government Response Tracker (OxCGRT) Stringency Index (OxSI): measures restrictive policies, SI ∈ (0, 100)
- Vax: Vaccination rate
- time fixed effects: summer


- Data

OxSI& GMI: WEU


- Data

OxSI& GMI: EEU

- Data

OxSI& GMI: Ex-Yuao

Former Yugoslavia

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Western EU

Table: Dependent variable: GMI

	AUT	DEU	GBR	ITA	AUT	DEU	GBR	ITA
		Ca	ses			Dea	aths	
OxSI _t	-0.485***	-0.473***	-0.425***	-0.397***	-0.474***	-0.436***	-0.419***	-0.364***
Reaction	-0.399***	-0.392***	-0.361***	-0.991***	-0.347***	-0.290***	-0.316***	-0.775***
Vax rate	0.087***	0.062***	0.046***	-0.025*	0.070***	0.049***	0.013	-0.017
$\Delta Covid$	-0.000***	-0.000***	-0.000***	-0.000	-0.046***	-0.006***	-0.004***	-0.004**
R_a^2	0.597	0.591	0.848	0.750	0.598	0.594	0.842	0.751
F-stat	199.614	112.456	736.717	275.239	200.117	141.831	782.241	247.379
	Policy com	pliance: ERS	test					
$t - ERS^{\dagger}$	-4.571	-5.319	-5.780	-5.274	-4.593	-6.157	-5.230	-5.218

* p < 0.10, ** p < 0.05, *** p < 0.01

†ERS critical values: (1%, 5%, 10%)= (-3.480, -2.890, -2.570)

Eastern EU

Table: Dependent variable: GMI

-	CZE	HUN	POL	ROU	CZE	HUN	POL	ROU
		Ca	ses			Dea	aths	
OxSI _t	-0.477***	-0.239***	-0.513***	-0.317***	-0.484***	-0.243***	-0.505***	-0.308***
Response	-0.450***	-0.372***	-0.345***	-0.457***	-0.446***	-0.375***	-0.344***	-0.445***
Vax rate	0.064***	0.053***	0.144***	0.071***	0.055***	0.050**	0.146***	0.072**
$\Delta Covid$	-0.000	-0.000	0.000	0.000*	-0.009	-0.001	0.002	0.001
R_a^2	0.637	0.564	0.590	0.727	0.635	0.564	0.590	0.726
F-stat	192.006	115.039	158.184	236.080	194.381	115.402	156.890	231.037
	Policy com	pliance: ERS	toot					
	Folicy com	pliance. Eno	lesi					
$t - ERS^{\dagger}$	-6.731	-6.850	-5.694	-6.784	-6.763	-6.870	-5.679	-6.776

* p < 0.10, ** p < 0.05, *** p < 0.01

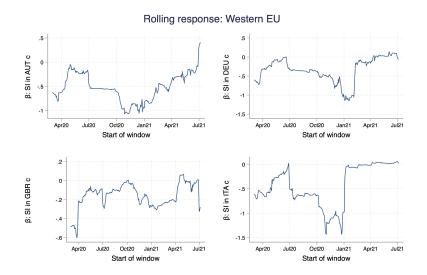
†ERS critical values: (1%, 5%, 10%)= (-3.480, -2.890, -2.570)

・ロト・日本・日本・日本・日本・日本

Former Yugoslavia

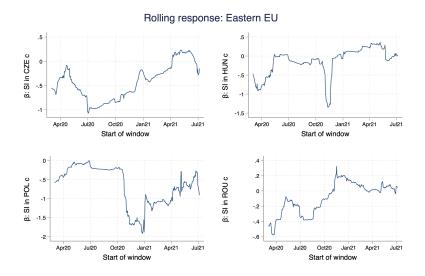
Table: Dependent variable: GMI

-	BIH	HRV	SVN	SRB	BIH	HRV	SVN	SRB
		Ca	ses			Dea	aths	
OxSI _t	-0.444***	-0.550***	-0.549***	-0.470***	-0.437***	-0.535***	-0.518***	-0.470***
Response	-0.356***	-0.473***	-0.548***	-0.548***	-0.338***	-0.431***	-0.485***	-0.549***
Vax rate	0.291***	0.183***	0.058**	0.110***	0.282***	0.156***	0.077***	0.109***
$\Delta Covid$	-0.001**	-0.001***	0.001	0.000	-0.002	-0.082***	-0.026	0.004
R_a^2	0.862	0.813	0.708	0.823	0.861	0.811	0.707	0.823
F-stat	507.049	480.162	293.985	507.494	507.589	470.332	310.016	507.700
	Policy com	pliance: ERS	test					
$t - ERS^{\dagger}$	-4.492	-4.492	-5.881	-5.043	-4.117	-4.174	-5.922	-5.048


* p < 0.10, ** p < 0.05, *** p < 0.01

†ERS critical values: (1%, 5%, 10%)= (-3.480, -2.890, -2.570)

<ロト < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

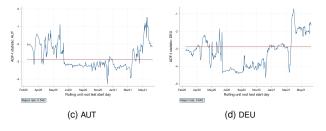

COVID	behavior
-------	----------

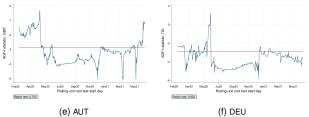
- Rolling β

COVID	behavior
-------	----------

- Rolling β

COVID	behavior
-------	----------

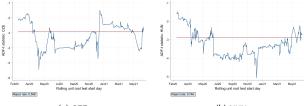

- Rolling β



- Results

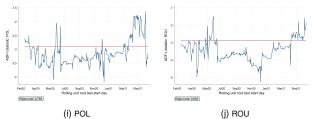
270 day rolling ADF

Rolling ADF: WEU



Red line is 5% critical value

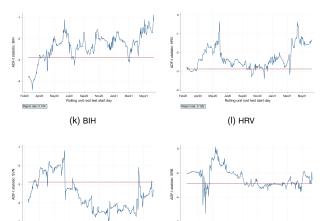
- Results


270 day rolling ADF

Rolling ADF: EEU

(g) CZE

(h) HUN



Red line is 5% critical value

- Results

-270 day rolling ADF

Rolling ADF: Ex-Yugo

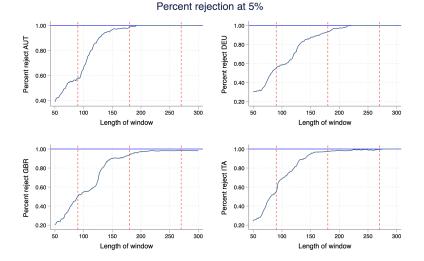
Feb20 Apr20 Mey20 Jul20 Sep20 Nov20 Jul21 Rolling unit root test start day Reject rate: 0.355

(n) SRB

Rolling unit root test start day (m) SVN

Feb20 Apr20 May20 Jul20 Sep20 Nov20 Jul21 Mar21 May21

Roject rate: 0.761

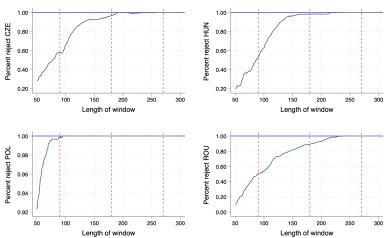

Red line is 5% critical value

Mar21 May21

- Results

Time to compliance: Rolling ADF from 50 to 300 days

Western EU

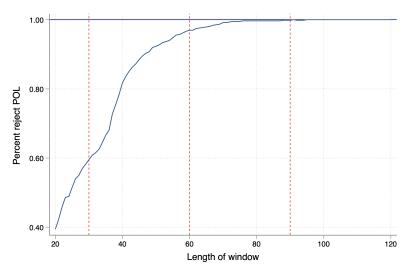

Red dotted lines, every 90 days

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Results

Time to compliance: Rolling ADF from 50 to 300 days

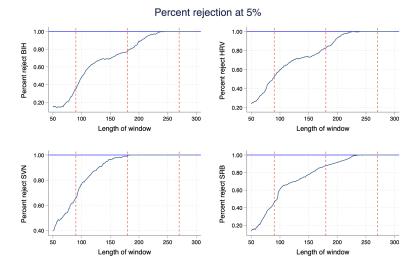
Eastern EU


Percent rejection at 5%

Red dotted lines, every 90 days

- Results

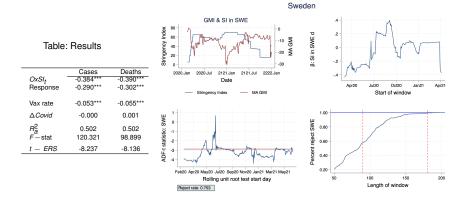
Time to compliance: Rolling ADF from 50 to 300 days


Poland revisited

- Results

Time to compliance: Rolling ADF from 50 to 300 days

Ex-Yugo


Red dotted lines, every 90 days

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Results

- Sweden

The case of Sweden: Laissez-faire

- Behavioral Clubs

Clubs

 The methodology applies empirical growth convergence models to determine similar dynamic behavior, if

$$\lim_{\{t\to\infty\}}B_{i,t}=B_{j,t}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

i and j belong to the same "club"

- Consider three types of clubs
 - Mobility
 - Policy
 - Observable

- Behavioral Clubs

The model

Model uses the following

$$\sigma_t^2 = \alpha + \gamma t + \epsilon_t$$

where σ_t^2 is the cross-sectional variance over time, we care about γ

- ▶ $\gamma < 0 \rightarrow$ divergence
- $\gamma \in (0, 2) \rightarrow$ conditional convergence in growth rates (σ)
- $\gamma > 2 \rightarrow$ absolute convergence (β)

COVID	behavior

- Behavioral Clubs

Mobility

 $\hat{\gamma} = -5.064$

Club	$\hat{\gamma}$	Members
1	-0.357	BGR, BIH, GEO, GRC, HRV, MLT, POL, RUS, SRB, TUR
2	-0.885	HUN, PRT
3	0.354	CZE, FRA
4	0.736	BEL, ESP, EST, ITA, LUX, ROU, SVK, UKR
5	2.485	BLR, CHE, DEU, DNK, MDA, <mark>SVN</mark>
6	0.898	AUT, FIN, GBR, IRL, LVA, NLD, NOR, SWE
NA	-3.941	LIE, LTU, MKD

COVID be	ehavior
----------	---------

- Behavioral Clubs

Policy

 $\hat{\gamma} = -0.838$

Club	$\hat{\gamma}$	Members
1	2.681	AUT, DEU, ITA
2	0.410	BGR, BLR, CYP, CZE, GBR, IRL, LVA, NLD, PRT, ROU, UKR
3	0.028	BEL, CHE, ESP, EST, FIN, FRA, GEO, ISL, LIE, LTU, LUX, MDA, MLT, NOR, POL, RUS, SVK, <mark>SVN</mark> , TUR
4	0.957	DNK, HRV, HUN, SRB, SWE
NA	-2.472	BIH, GRC

- Behavioral Clubs

Unobserved

 $\hat{\gamma} = -0.316$

Club	$\hat{\gamma}$	Members
1	-0.137	ESP, FIN, GEO, ROU, SVK, TUR
2	0.063	BGR, PRT
3	0.737***	BEL, LUX
4	0.281	FRA, POL, <mark>SVN</mark>
5	0.057	GRC, HRV, LTU
6	0.139	DEU, GBR, HUN
7	0.342	BLR, MDA, MLT, RUS
8	0.056	EST, NOR, UKR
9	0.246	BIH, SRB
10	0.026	DNK, SWE
NA	-0.333***	AUT, CHE, CZE, IRL, ITA, LIE, LVA, NLD

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

COVID behavior

Summary

Summary

- There is heterogeneity across countries in terms of relative risk
- Policy maker and resident preferences do converge
- Alignment of preferences can change over the course of a pandemic
- It takes about 2/3s of a year for preferences to converge: signal-to-noise ratio is low in the "short-run", but this is faster than in US states (about 1 year)
- There are mobility and policy clubs, but "animal spirits" behavior displays no such convergence.

NYT, "Lurching Between Crisis and Complacency: Was This Our Last Covid Surge?" (10/14/21):

Jennifer Nuzzo, an epidemiologist at Johns Hopkins University:

"The curve is shaped by public awareness. We're sort of lurching between crisis and complacency."